Trees imply nested subsets, and vice versa
Rooted binary tree with labeled leaves (directed graph)

Graph with labeled leaves and internal vertices of degree 3 (undirected graph)

An unrooted tree can imply many possible rooted trees

3 unrooted trees and 15 rooted trees for 4 taxa:
Networks

• Network: unrooted tree, often including cycles.
 – Uses:
 • Initial step in formation of rooted tree if polarities are not hypothesized *a priori*.
 • Depiction of non-hierarchical structure within population, in which nodes represent observed individuals:
 – Minimum-spanning trees.
 – Nested clade analysis.
 • Depiction of reticulation:
 – Hybridization.
 – Lateral (horizontal) transfer.
 – Recombination.

South Park

Networks

• Network depicting a taxonomy of networks:

http://www.lirmm.fr/~gambette/RePhylogeneticNetworks.php
1. Evolution is “descent with modification”.
 - Species (living or fossil) are descended from ancestral species.
 - Sets of two (or more) observed taxa are descended from common ancestors.
 - The processes of evolution result in changes from ancestors to descendants.
 - Genetic, morphological, ecological, behavioral, etc.
 - Many process-level explanations have been proposed to account for this pattern.
 - Models, verbal and mathematical.
 - *Translate*: the tree model is adequate to describe patterns of evolutionary relationships.

2. The basic structure of a phylogenetic tree is hierarchical, with dichotomous (=binary, =bifurcated) branching.

Complications:
 - Reticulation (e.g., due to hybridization or horizontal transfer) is biologically possible, but difficult to fit uniquely to data.
 - *Translate*: binary branching is a simplifying assumption of the model.
 - Polychotomous (multifurcated) branching patterns are biologically possible, but can’t be distinguished from lack of resolution.
 - *Translate*: zero branch lengths might be real or artifactual.
Phylogenetic model: basic premises

3. We can use information on living species and fossils to infer the historical relationships among them.
 - *Translate*: we use the states of variables on observations to “optimally” fit the model of dichotomous branching.
 - Involves simultaneous estimation of the branching structure (tree topology) and the branch lengths.
 - *Homoplasy* is the residual variation: lack of fit of the data to the model.

Phylogenetic model: basic premises

4. We should make clear distinctions between:
 a) Trees as summaries of the data.
 b) The uses to which they are put:
 • Hypotheses and explanations about:
 – Evolutionary relationships (phylogenies).
 – Patterns of character evolution.

 – Aim is to avoid logical circularity.
This stuff should be easy

- The process of phylogenetic inference seems like it should be a simple, straightforward process.
- However, there are three basic problems:
 1. The biological problem: different characters do not necessarily produce the same trees.
 2. The first methodological problem: it’s unclear as to what optimality criterion and assumptions to use to fit the ‘best’ tree.
 3. The second methodological problem: finding the ‘best’ tree may be impossible.

1. The biological problem: different characters do not necessarily produce the same trees.
 - If all evolution were divergent, all characters would agree.
 - Same tree topology.
 - Not necessarily the same branch lengths.
 - Some characters become more similar in different species over time (convergence) or change in parallel over time (parallelism).
 - Translate: lack of fit of the model to the data (homoplasy).
 - Hybridization or horizontal transfer may produce reticulation rather than dichotomous evolution.
 - Translate: wrong model.
2. The *first methodological* problem: it’s unclear as to what optimality criterion to use to fit the ‘best’ tree.

• Spectrum of opinion about underlying assumptions. The extremes:
 (a) We should make as many realistic assumptions as possible.
 • The “best” phylogeny should incorporate as much as is known or surmised about evolutionary processes (*translate*: strong assumptions).
 – E.g., specific models of nucleotide substitution or developmental change.
 • Favored by molecular systematists.
 • Problem: if the assumptions are wrong, the fitted model is probably wrong.
 (b) We should make as few assumptions as possible.
 • Parsimony criterion (scientific sense).
 • The model is only as good as the assumptions.
 • The most “robust” phylogeny should be relatively independent of specific models of evolution.
 – Especially if the resulting tree is used to test independent biological hypotheses, to avoid logical circularity.
 » Rates or sequences of character evolution.
 » Biogeographic patterns.
 » Phenotypic distributions.
 • “Pattern cladists” (after C. Patterson):
 – Trees should assume nothing except the existence of hierarchy in nature.
 » Nested sets of objects: characters, taxa, etc.
 • *Translate*: weak assumptions.
 (c) Most biologists take a tenuous middle ground.
3. The second methodological problem: finding the ‘best’ tree may be impossible.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Number of rooted trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>945</td>
</tr>
<tr>
<td>7</td>
<td>10,395</td>
</tr>
<tr>
<td>8</td>
<td>135,135</td>
</tr>
<tr>
<td>9</td>
<td>2,027,025</td>
</tr>
<tr>
<td>10</td>
<td>34,459,425</td>
</tr>
<tr>
<td>11</td>
<td>654,729,075</td>
</tr>
<tr>
<td>12</td>
<td>13,749,310,575</td>
</tr>
<tr>
<td>13</td>
<td>316,234,143,225</td>
</tr>
<tr>
<td>14</td>
<td>7,905,853,580,625</td>
</tr>
<tr>
<td>15</td>
<td>213,458,046,676,875</td>
</tr>
<tr>
<td>16</td>
<td>6,190,283,353,629,370</td>
</tr>
<tr>
<td>17</td>
<td>191,898,783,962,510,000</td>
</tr>
<tr>
<td>18</td>
<td>6,332,659,870,762,850,000</td>
</tr>
<tr>
<td>19</td>
<td>221,643,095,476,699,000,000</td>
</tr>
<tr>
<td>20</td>
<td>8,200,794,532,637,890,000,000</td>
</tr>
</tbody>
</table>

Age of universe ≈ 13.7×10⁹ yrs.
If scan 10⁷ trees/sec, could scan almost all trees for 22 taxa in that time (=1.3×10²⁵).

For 52 taxa, number of trees = 2.8×10⁸⁰.

Optimization
• Minimization of a continuous function of a parameter:
 – E.g., regression function.
Optimization

- Example of 1-parameter model: optimal slope of line through center of data.
 - Objective function: sum of absolute orthogonal residuals (least-absolute regression).

Optimization

- Example of 1-parameter model: optimal slope of line through center of data.
 - Objective function: sum of squared orthogonal residuals (major-axis regression).
Optimization

• Minimization of a continuous function of two parameters:

Optimization

• Analogy with Sewell Wright’s concept of an adaptive landscape:
Optimization

• Example of 2-parameter model: least-squares regression.
 – Objective function: sum of squared vertical residuals.

 \[Y = b_0 + b_1 X \]

 \[b_0 = 4.60 \quad b_1 = 0.96 \]

Optimization

• Minimization of a discrete function of a parameter:
 – E.g., tree.
Optimization

- Minimization of a discrete function of two parameters:

![3D plot of objective function value against Parameter 1 and Parameter 2](image)

Optimization

- Distribution of some near-optimal trees in Bayesian tree space:

![Images of trees](image)

Hillis et al. 2005
Optimization

• Algorithmic complexity: how long does it take to solve a problem?
 (1) P: problems can be solved in polynomial time:
 • Can get in the answer in at most cn^k steps, where n is a measure of the ‘size’ of the problem.
 • Large problems are not too difficult.
 • E.g., solving a set of simultaneous equations.
 (2) N-P: problems can be guessed in polynomial time and checked in polynomial time:
 • Can get in the answer in at most $(cn^k)(cn^k)$ steps.
 • Large problems are difficult.
 • E.g., given a set of integers, does some non-empty subset of them sum to zero?
 (3) N-P complete: problems can be solved only in exponential time:
 • Can get the answer in at most ck^n steps.
 • Large problems are intractable, and most can be solved only by complete enumeration.
 • E.g., Steiner (travelling-salesman) problem, and shortest-tree problem.
 • Some heuristics (e.g., branch-and-bound) can be used to speed-up solutions.

Taxonomy of phylogenetic methods

• Two kinds of similarity: phenetic and cladistic.
• Two kinds of methods: algorithmic and combinatoric.
• Five basic numerical approaches:
 (a) Cluster analysis: phenetic, algorithmic.
 (b) Additive trees: phenetic, algorithmic.
 (c) Minimum evolution: cladistic, combinatoric.
 (d) Maximum likelihood: phenetic or cladistic, algorithmic or combinatoric.
 (e) Bayesian ‘likelihood’: phenetic or cladistic, algorithmic or combinatoric.
Two kinds of similarity
Two fundamentally different philosophical approaches, based solely on different concepts of "similarity":

(1) Phenetic: based on overall similarity.
 - Uses matrix of pairwise distances among taxa.
 - Problem: distance measures can't distinguish divergence (model) from convergence (residual variation).

(2) Cladistic: based on derived similarity.
 - Similarity based on derived states since most recent common ancestor.
 - Uses character matrix.
 - Problem: identification of ancestral vs. derived character states presumes knowledge of relationships (the "polarity" problem).
 » Logically circular.
 - Extrinsic criteria must be used:
 » Prior: developmental or paleontological precedence, etc.
 » Posterior: use of outgroup to root the tree.

Two classes of methods

(1) Algorithmic:
 - Formulate an algorithm (set of rules) for generating a tree from a data matrix.
 - Play out the algorithm (exact or iterative).
 - Global optimality criterion: maximum-likelihood estimation.
 - Local optimality criterion:
 • Additive and ultrametric clustering methods.
 - Problems:
 • The rules for generating the tree might not have any biological/evolutionary basis.
 • Even if the optimality criterion is global, any particular solution might be only locally optimal.
Two classes of methods

(2) Combinatoric:
- Formulate a quantitative criterion for choosing the "best" tree (objective function).
- Compare all possible trees (or a reasonable subset), giving each tree a score based on the criterion.
- Choose the tree (or possibly set of trees) having the best score.
- *Problem*: the number of possible trees is enormous.

Five basic numerical approaches applied in the literature

1. Cluster analysis: ultrametric hierarchical agglomerative clustering (phenetic)
- Object: find a unique tree (dendrogram) based on:
 - A measure of distance (dissimilarity):
 - Euclidean, Manhattan, Mahalanobis, correlation complement, etc.
 - A clustering criterion:
 - UPGMA (unweighted pair grouping)
 - WPGMA (weighted pair grouping)
 - Single linkage (Prim network)
 - Complete linkage (farthest neighbors)
 - Nearest neighbor
 - Minimum variance (Ward's method)
• Cluster analysis
 – Advantages:
 • Provides a unique solution, given the distance measure and clustering criterion.
 • Recursive and fast.
 – Disadvantages:
 • Unique solution not globally optimal in any sense.
 • Phenetic: based on pairwise measures of overall difference (overall similarity).
 • No biological rationales for choosing among the infinite numbers of different distance measures and clustering criteria, all combinations of which produce different results.
 • Most methods assume ultrametric pairwise distances (3-point condition).
 – All terminal taxa equidistant from nodes.
 – Assumes equal mean rates of evolution.
 • Most methods are special cases of a general 5-parameter model and are therefore arbitrary.
 • Provide unique trees even for completely random data.
Basic problem with cluster analysis

- Six species of fishes.
- Three different measures of similarity.
- Three different assessments of relationship.

Lance and Williams (1967) ‘flexible’ model
2. Additive trees (phenetic)
 – Object: find a unique tree (dendrogram) based on:
 • A measure of distance (dissimilarity).
 – Euclidean, Mahalanobis, etc. (continuous characters).
 – Manhattan, Hemming, percent dissimilarity, etc. (discrete characters).
 • A clustering criterion; e.g.,
 – Neighbor-joining (Saitou-Nei)
 – Distance-Wagner algorithm (Farris)
 – Fitch-Margoliash algorithm
 – Lake’s criterion
 – Least squares (optimization criterion)

- Advantages:
 - Unique solution, given the distance measure and clustering criterion.
 - Recursive and fairly fast.
 - Relaxes assumption of equal rates of evolution.
 - Can be rerooted for a specified outgroup.

- Disadvantages:
 - Not globally optimal in any sense (except least-squares).
 - Based on pairwise measures of overall difference (phenetic).
 - No biological rationales for choosing among different distance measures and clustering criteria.
 - Produces trees for random data.

Ultrametric and additive trees for same data

![Ultrametric and additive trees for same data](image)
3. Minimum evolution (=‘parsimony’) (cladistic)

- Object: find the shortest tree consistent with the data:
 - Cladogram, for discrete characters.
 - Minimize the number of "ad hoc" hypotheses about character-state changes.
 - Steiner minimum tree, for continuous characters.
 - Minimize total tree length.

- Versions of the discrete minimum-evolution model:
 - Fitch parsimony (=strict parsimony): character states are unordered and reversible.
 - Wagner parsimony: character states are ordered but reversible.
 - Dollo parsimony: synapomorphies assumed to be uniquely derived, and can reverse only once (reversals are minimized and convergence is prohibited).
 - Camin-Sokal parsimony: character states are irreversible (because reversals are ‘really’ new apomorphies).
• **Minimum-evolution:**
 - **Advantages:**
 • Assumes only minimal character-state change as a criterion for choosing among trees.
 - **Disadvantages:**
 • For discrete characters, usually produces sets of equally short ("parsimonious") trees.
 - Can differ markedly in topology and branch lengths.
 • Consensus methods.
 • When extended to use as a phylogenetic hypothesis (evolutionary tree), implies minimal evolution.
 • NP-complete combinatorial problem.
 - Only way to find shortest tree is to examine all possible trees.
 » For small numbers of taxa (<20 or so), might find the globally optimal solution by brute force.
 - Some methods examine an intelligent subset of all possible trees:
 » E.g., branch and bound (<30 or so taxa).
 - Heuristics not guaranteed to be globally optimal.

4. **Maximum likelihood (phenetic or cladistic)**
 - **Object:** find the tree (topology + branch lengths) having the greatest probability of giving rise to the observed data.
 • Maximizes $Pr(\text{data | model}) = Pr(\text{data | [tree + assumptions]})$.
 • Based on an explicit model of evolution:
 - Specifies the "rules" and probabilities of character-state change over time.
 - **Advantages:**
 • Provides a unique parametric solution that is globally optimal.
 • Provides standard errors and related measures to assess the statistical goodness of fit.
 • Allows for the statistical comparison of different trees for the same data.
 - **Disadvantages:**
 • Explicit assumptions. E.g., for continuous characters:
 - Random-walk (Brownian) model of evolution.
 - Deviations along branches normally distributed with constant variance (homoscedasticity).
 • Computationally expensive.
Some character-state graphs and corresponding transition matrices

Swofford and Maddison
1992

Some maximum-likelihood trees (rooted and unrooted)
5. Bayesian likelihood (phenetic or cladistic)

- **Object:** find the tree (topology + branch lengths) having the greatest probability of being true, given the observed data.
 - Maximizes $Pr(\text{model} | \text{data}) = Pr([\text{tree} + \text{assumptions}] | \text{data})$.
 - Based on an explicit model of evolution:
 - Specifies distributions of “rules” and probabilities of character-state change over time.
 - Provides a consensus of a large number of highly likely trees.

- **Advantages:**
 - Parametric solution is close to globally optimal.
 - Provides posterior probabilities and related measures to assess the statistical goodness of fit.

- **Disadvantages:**
 - Explicit assumptions.
 - Computationally expensive: Markov-chain Monte Carlo (MCMC) methods.

<table>
<thead>
<tr>
<th>Approach</th>
<th>1. Phenetic</th>
<th>2. Cladistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity concept:</td>
<td>Overall similarity</td>
<td>Derived similarity</td>
</tr>
<tr>
<td>Evidence supporting groups:</td>
<td>Degree of similarity</td>
<td>Character changes leading up to the most recent common ancestor</td>
</tr>
<tr>
<td>Basic data</td>
<td>Pairwise distances among taxa</td>
<td></td>
</tr>
<tr>
<td>Kinds of characters</td>
<td>Discrete (nominal, ordinal)</td>
<td></td>
</tr>
<tr>
<td>Numerical methods</td>
<td>Cluster analysis</td>
<td></td>
</tr>
<tr>
<td>Character-state changes</td>
<td>Secondarily mapped onto tree</td>
<td></td>
</tr>
<tr>
<td>Primarily used by</td>
<td>Morphological systematists (until the past 10–15 years)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Cladistic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian inference</td>
<td></td>
</tr>
<tr>
<td>Combinatorics</td>
<td></td>
</tr>
<tr>
<td>Graph theory</td>
<td></td>
</tr>
</tbody>
</table>

Other characters can be secondarily mapped onto the tree.