Additive vs ultrametric: triangle inequality

- Pairwise distance: any numeric variable that:
 - Expresses the difference between two objects \(a, b\).
 - Has at least the properties of being metric:
 (1) \(d(a,a)=0,\ d(b,b)=0,\ \text{and}\ d(a,b)\geq0\)
 - Identical objects are indistinguishable.
 - Nonidentical objects might or might not be distinguishable.
 (2) If \(a\neq b\), then \(d(a,b)>0\)
 - If the objects differ in properties being measured, then their distance must be greater than zero.
 (3) \(d(a,b)=d(b,a)\)
 - Symmetry.

Additive vs ultrametric: triangle inequality

(4) \(d(a,c)\leq d(a,b) + d(b,c)\)
- Triangle inequality.
- Any set of distances having the 4 metric properties will produce an additive tree.
- Properties can be superimposed on distances, even if they don’t possess the properties.
 - ‘Forces’ the distances into an additive tree.
- 4th property can be relaxed:
 (4) \(d(a,c)\leq \max\{d(a,b),\ d(b,c)\}\)
 - Any set of distances having these properties will produce an ultrametric tree.
 - Any distances can be ‘forced’ into an ultrametric tree.
 - Ensures that clustering monotonically increases with distance.
Some commonly used distances

- Euclidean distance:

- Manhattan distance:

- Mahalanobis distance:

- Hamming distance between two strings of equal length: number of positions in which symbols are different (→ percent dissimilarity).

Ultrametric and additive trees for same data

Monotonically Increasing clustering
General procedure for hierarchical cluster analysis

(1) Begin with N x N symmetric distance matrix.
(2) Each object (taxon) initially considered to be a separate cluster.
(3) Find two objects \(i \) and \(j \) separated by smallest distance.
(4) Combine objects \(i \) and \(j \) into a new cluster, \(k \).
(5) Calculate distance between the new cluster and all other existing clusters.
 – Reduces size of the distance matrix.
(6) Go to step 3. Continue until all objects have been merged into a single cluster.

Cluster analysis

• Methods differ according to (5) how distances are calculated between new cluster and all other existing clusters:
 – Single linkage:

 ![Single linkage diagram]

 – Complete linkage:

 ![Complete linkage diagram]

 – UPGMA, WPGMA:
Cluster analyses

Distances are always estimates

- Pairwise distance values are never exact:
 - Complete phylogenetic record of all genetic/phenotypic events would constitute set of distances that are completely:
 - Additive.
 - Mutually consistent across all taxa.
 - Observed distances are approximations:
 - Comprise ‘true’ distances, plus error.
 - Don’t display complete additivity and mutual consistency.
 - Additivity (metricity) and ultrametricity are properties of a distance matrix.
 - Can be tested statistically.
UPGMA

- UPGMA and other ultrametric methods assume that evolutionary rates have been constant:
 - Simulations show will work if rates are variable, but constant on average (clocklike, =stationary).
 - But if rates are not clocklike, can give misleading results.
 - Estimation error can mimic effects of nonstationarity.

Additive trees

- Calculated in iterative fashion.
 - Several algorithms, most giving similar results.
 - Update placement of nodes rather than formation of clusters.
- Rate uniformity not assumed.
 - Corrects original distances for unequal divergence among branches.
- Least-squares and neighbor-joining trees guaranteed to recover true tree if distance matrix is an exact reflection of a tree.
Phenetic vs patristic distances

• Assessing agreement between tree and original distance matrix:
 – Patristic distance: predicted between two taxa by tree.
 • UPGMA: 2 x distance to nearest common node.
 • NJ: sum of horizontal branch lengths between taxa.

Correlations between phenetic and patristic distances

• *Ex*: phenetic distances calculated from clocklike tree:
 – Add noise.
 – Calculate cophenetic correlation between phenetic and patristic distances.
Assessing confidence in trees

• Two basic kinds of questions:
 (1) Is the overall tree “significant”, or significantly better than another tree?
 • Permutation tests.
 • Frequency distributions of tree lengths.
 – E.g., g_1 statistic.
 • Likelihood and Bayesian scores.
 (2) Are particular parts of the tree “significant”?
 • Bootstrapping.
 • Bayesian posterior probabilities.
 • Bremer support.

Bootstrap

• Bootstrap: general randomization procedure for estimating reliability of statistics:
 – Used primarily for estimating sampling distributions and associated confidence intervals.
 – Bootstrap (or bootstrapped) sample from a sample of N observations is a resample of those N observations with replacement.
 • Any particular observation might be sampled once, twice, or more often, or might be missed altogether.
 • Number of unique bootstrap samples: N^N.
 • In practice, use a random set of bootstrap samples, sufficient to stabilize the values we’re trying to estimate.

<table>
<thead>
<tr>
<th>Original sample</th>
<th>Bootstrapped resamples (of 46656 possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 2 6 5 4 5 6 3 6 4</td>
</tr>
<tr>
<td>2</td>
<td>3 3 6 5 6 5 1 5 1</td>
</tr>
<tr>
<td>3</td>
<td>4 1 2 3 1 6 4 5 1 5</td>
</tr>
<tr>
<td>4</td>
<td>2 5 1 4 6 1 4 3 3</td>
</tr>
<tr>
<td>5</td>
<td>4 1 4 6 1 5 4 5 6 2</td>
</tr>
<tr>
<td>6</td>
<td>4 3 4 2 1 3 5 5 6 2</td>
</tr>
</tbody>
</table>
• Rationale and strong assumption: all observations are equivalent (i.e., independent replicates) and are representative of all possible observations that might have been sampled from the population.

Bootstrapping trees

• Very important topic in the theory and practice of phylogenetic inference.
• Originally proposed for trees estimated by “parsimony” with discrete data (Felsenstein 1985).
• Can be extended to all trees and networks:
 – Cladograms, dendrograms, phenograms, etc.
Bootstrapping trees

- Requires data matrix from which distance matrix is calculated:
 - Sample characters, with replacement, maintaining number of characters.
 - Bootstrapped sample, = pseudoreplicate.
 - Acts as a proxy for a true replicate from nature.
 - Convert pseudoreplicate data matrix to distance matrix.
 - For ultrametric and additive trees.
 - Construct tree, keep track of appearance of clusters (groups, clades, etc.).
 - Proportion of bootstrapped trees in which observed clusters occur.
- Gives bootstrap support frequency (BSF).

Original data matrix

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 3 2 1</td>
</tr>
<tr>
<td>B</td>
<td>2 4 5 1</td>
</tr>
<tr>
<td>C</td>
<td>1 2 2 1</td>
</tr>
<tr>
<td>D</td>
<td>2 1 3 3</td>
</tr>
<tr>
<td>E</td>
<td>2 1 2 3</td>
</tr>
</tbody>
</table>

Bootstrapped data matrix

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 1 2 2</td>
</tr>
<tr>
<td>B</td>
<td>2 2 5 5</td>
</tr>
<tr>
<td>C</td>
<td>1 1 2 2</td>
</tr>
<tr>
<td>D</td>
<td>2 2 3 3</td>
</tr>
<tr>
<td>E</td>
<td>2 2 2 2</td>
</tr>
</tbody>
</table>

- Assumes that characters are:
 - Independent (uncorrelated).
 - Equivalent (equally weighted).
 - Representative of an underlying pool of characters that might have been sampled.
Bootstrapping trees

1. Data matrix → Distance matrix → Tree
2. Record groups observed on tree
3. Pseudoreplicate data matrix → Pseudoreplicate distance matrix → Pseudoreplicate tree
4. Record whether observed groups are on pseudoreplicate tree
5. Yes → Continue?
6. No → Calculate BSFs

Bootstrapped UPGMA and NJ trees from same random data

- UPGMA tree with distances:
 - 0.52
 - 0.64
 - 0.76
 - 0.96
- Neighbor-joining tree with distances:
 - 0.01
 - 0.01
 - 0.01
 - 0.64
 - 0.01

Distance scale from 0 to 1.
Common interpretations of bootstrap support frequencies

- Probability that the cluster (clade) will be observed on repeated sampling of many characters from the underlying pool of characters.
- Confidence limit on a cluster.
- Level of "significance" of a cluster.
- Probability that a given cluster is a "real" group.
- General measure of support for a given cluster.

Assessing the “significance” of a bootstrap support frequency

- Minimum-50% (majority consensus) rule.
- Gestalt 70% rule (Hillis & Bull 1993).
- 1-P rule (Felsenstein & Kishino 1993).

However:
- None of these rules is adequate.
- All can be misleading.
Expected BSFs per hundred bootstrap iterations (by simulation)

Other methods for modeling distance matrices

Cluster analysis methods

Distance matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>1.41</td>
<td>2.45</td>
<td>2.45</td>
<td>2.83</td>
</tr>
<tr>
<td>2</td>
<td>1.41</td>
<td>0.00</td>
<td>2.45</td>
<td>3.16</td>
<td>2.45</td>
</tr>
<tr>
<td>3</td>
<td>2.45</td>
<td>2.45</td>
<td>0.00</td>
<td>1.41</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>2.45</td>
<td>3.16</td>
<td>1.41</td>
<td>0.00</td>
<td>2.45</td>
</tr>
<tr>
<td>5</td>
<td>2.83</td>
<td>2.45</td>
<td>1.41</td>
<td>2.45</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Ordination methods

- Principal coordinates
- Multidimensional scaling
- Principal components

Data matrix

<table>
<thead>
<tr>
<th>Taxa</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.00</td>
<td>0.16</td>
<td>0.79</td>
</tr>
<tr>
<td>b</td>
<td>0.16</td>
<td>1.00</td>
<td>0.37</td>
</tr>
<tr>
<td>c</td>
<td>0.79</td>
<td>0.37</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Principal coordinates analysis (PCoA)

- Eigenanalysis method:
 - Decomposes information in the distance matrix into a set of orthogonal axes:
 - Axes = principal coordinates.
 - Orthogonal = statistically independent.
 - Principal coordinates:
 - PCo1 accounts for the maximum information in the distance matrix.
 - PCo2 accounts for the maximum residual information in the distance matrix, independent of PCo1.
 - PCo3 accounts for the maximum residual information in the distance matrix, independent of both PCo1 and PCo2.
 - Etc.
 - For an N×N distance matrix, there are N principal coordinates.
 - The full set of N principal coordinates accounts for all of the information in the distance matrix.
 - Observations (taxa) are projected onto the axes to give projection scores, which can be plotted with scattergrams.

Distance matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>1.41</td>
<td>2.45</td>
<td>2.45</td>
<td>2.83</td>
</tr>
<tr>
<td>2</td>
<td>1.41</td>
<td>0.00</td>
<td>2.45</td>
<td>3.16</td>
<td>2.45</td>
</tr>
<tr>
<td>3</td>
<td>2.45</td>
<td>2.45</td>
<td>0.00</td>
<td>1.41</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>2.45</td>
<td>3.16</td>
<td>1.41</td>
<td>0.00</td>
<td>2.45</td>
</tr>
<tr>
<td>5</td>
<td>2.83</td>
<td>2.45</td>
<td>1.41</td>
<td>2.45</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Multidimensional scaling (MDS)

- Not an eigenanalysis method:
 - Information in distance matrix is not decomposed.
- Points representing observations (taxa) are ‘squeezed’ into 1D, 2D, or 3D... space.
 - Placed into space so that interpoint distances reconstruct original distances as much as possible.
 - Metric and nonmetric (monotonic) versions.
 - Axes are arbitrary, and points can be arbitrarily rotated.
 - Amount of distortion measured as ‘stress’.
- Observations (taxa) are projected onto the axes to give projection scores, which can be plotted with scattergrams.

Distance matrix:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>1.41</td>
<td>2.45</td>
<td>2.45</td>
<td>2.83</td>
</tr>
<tr>
<td>2</td>
<td>1.41</td>
<td>0.00</td>
<td>2.45</td>
<td>3.16</td>
<td>2.45</td>
</tr>
<tr>
<td>3</td>
<td>2.45</td>
<td>2.45</td>
<td>0.00</td>
<td>1.41</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>2.45</td>
<td>3.16</td>
<td>1.41</td>
<td>0.00</td>
<td>2.45</td>
</tr>
<tr>
<td>5</td>
<td>2.83</td>
<td>2.45</td>
<td>1.41</td>
<td>2.45</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Stress = 0.27

Additive
Principal components analysis (PCA)

- Eigenanalysis method, but based on correlation or covariance matrix:
 - Decomposes information in the correlation matrix into a set of orthogonal axes:
 - Axes = principal components.
 - Orthogonal = statistically independent.
 - Principal components:
 - PC1 accounts for the maximum information in the distance matrix.
 - PC2 accounts for the maximum residual information in the distance matrix, independent of PC1.
 - PC3 accounts for the maximum residual information in the distance matrix, independent of both PC1 and PC2.
 - Etc.
 - For an $N \times N$ correlation matrix, there are N principal components.
 - The full set of N principal components accounts for all of the information in the distance matrix.
 - Observations (taxa) are projected onto the axes to give projection scores, which can be plotted with scattergrams.