Morphometrics
(Quantitative Morphology)

Rich Strauss
Biol 6301-047
Fall 2011
Introduction

• Morphometrics:
 – The study of (1) form, (2) variation in form, and (3) change in form among organisms.
 • Size (scaling)
 • Shape

• Serves as a basic methodological tool in:
 – Systematics, phylogenetics, paleontology
 – Evolutionary and theoretical morphology
 – Ecomorphology
 – Developmental biology
 – Quantitative genetics
 – Functional and constructional morphology
 – Forensics
• Morphometric methods are used to investigate three basic kinds of problems:

(1) **Patterns of variation**
- Variation among individuals
- Geographic variation
- Interspecific variation
- Effects of selective forces on morphology
 - E.g., evolutionary, agricultural, orthodontic
- Growth (normal or abnormal)
- Genetic basis: quantitative genetics
Three kinds of problems:

(2) Differences among “populations”
 - Populations defined \textit{a priori}
 - Discrimination:
 - How large is the difference?
 - What is the nature of the difference?
 - Is the difference statistically significant?
 - “Classification”:
 - Allocation of “unknowns” to known groups.

(3) Levels of similarity
 - Hierarchical relationships with respect to some criterion:
 - Overall similarity (phenetic)
 - Derived similarity (cladistic)
 - Basis for phylogenetic methods
• Some **basic premises** underlying morphometric methods:

 (1) Morphometry involves **geometric abstraction**.
• Premises:

(2) Underlying all morphometric analysis is the concept of form-change as a **deformation**.

– Concept dates from German Renaissance artist Albrecht Durer (1524):

– Elaborated and formalized by the mathematical biologist D’Arcy Thompson (1917, 1942):
• Premises:

(3) Comparisons limit descriptions:
 • One form can be described arbitrarily to any degree of resolution.
 • For sets of forms, the choice of descriptors can greatly affect the conclusions.
 • Analogous to distinction between description and diagnosis.

(4) Morphometrics can be used both for exploration and for hypothesis-testing.

(5) Question + geometric abstraction = method.
• Premises:

(6) Biologically informative morphometry is based on two fundamental biological principles:

(a) Homology:
- Evolutionary correspondence of structures among taxa.
- Extrapolates to correspondence of points (anatomical “landmarks” among taxa.
- Provides the basis for biological comparisons.
Premises:

(6) Two fundamental biological principles:
(b) Allometry:
 - Systematic change in shape (proportions) with increasing body size.
 - Provides a basis for size/shape decompositions.
• Premises:

(7) The most informative morphometric analysis separates the roles played by biology, geometry, and statistics:

- Biology → landmarks
- Geometry → relationships among landmarks
- Statistics → comparisons of sets of forms
• How to quantify and compare forms:

(1) **Rank their shapes:**
- Form a transition series with respect to one or more traits, and rank the individuals.

• Problem: the **Shape Monotonicity Theorem:**
 - For any three outlines \{A, B, C\}, there exist indefinitely many shape measures for which A and C have exactly the same value, so that B, no matter what it looks like, cannot be in between.
• Moral: any ranking of forms is arbitrary, because there can be no “natural” ranking.
• Applies to phylogenetic ‘character states’.
• How to quantify and compare forms:
 (2) Rely on **meristic (countable) features**.
 • E.g., vertebrae, scales, eye facets, trichomes, etc.
 • Too crude.

(3) Use **measurable (mensural) features** that characterize the size and shape of the organism.
 • E.g., lengths, angles, etc.
 • Problems: Which to use? How to compare? Homologous? Analogous?
• How to quantify and compare forms:
 (4) Estimate shape difference directly, without measuring original shapes.
 • Procrustes mappings

 • Biorthogonal grids

 • Thin-plate splines
Morphometrics: historical context

<table>
<thead>
<tr>
<th>Factor analysis</th>
<th>Allometry</th>
<th>Deformations</th>
<th>Shape spaces</th>
<th>Self-similar systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson, Wright, Spearman, Hotelling, Fisher, Mahalanobis, Mosteller (1890s – 1930s)</td>
<td>Huxley (1924, 1932)</td>
<td>Thompson (1917, 1942)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• A taxonomy of morphometric methods for describing forms:

(1) **Boundaries only**
- Geometric modeling and description
- Radius and tangent-angle functions
- Medial axes
- Fourier and wavelet decompositions

(2) **Landmarks only**
- Homology maps (e.g., Procrustes superimposition)
- Deformation methods
- Finite-element analyses
- Inter-landmark distance methods
- Multivariate statistics
- Path analysis, factor analysis

(3) **Boundaries + landmarks**